【Redis实战】缓存穿透、缓存雪崩、缓存击穿的区别和解决方案

一、正常处理流程

在这里插入图片描述
  先读cache,如果数据命中则返回;如果数据未命中则读db;将db中读取出来的数据入缓存。

private Map cache = new ConcrrentHashMap();
Object getFromCache(String key){
	Object value = cache.get(key);
	if(value==null){
		value = getByKey(key);
		cache.put(key,value);
	}
	return value;
}

二、常见问题

1、缓存穿透

  访问一个不存在的key,缓存不起作用,请求会穿透到DB,流量大时DB会挂掉。

解决方案
(1)采用布隆过滤器,使用一个足够大的bitmap,用于存储可能访问的key,不存在的key直接被过滤;
(2)拦截器,id<=0的直接拦截。
(3)从cache和db都取不到,可以将key-value写为key-null,设置较短过期时间,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击。
(4)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试
(5)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。

2、缓存击穿

  一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。

解决方案
(1)设置热点数据永远不过期。
(2)加互斥锁。

3、缓存雪崩

      大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。

解决方案
(1)缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
(2)如果缓存数据库是分布式部署,将热点数据均匀分布在不同的缓存数据库中。
(3)设置热点数据永远不过期。
(4)使用互斥锁,但是该方案吞吐量明显下降了。
(5)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点:

  • 从缓存A读数据,有则直接返回
  • A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。
  • 更新线程同时更新缓存A和缓存B。
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页